当前位置: 华文星空 > 知识

什么飞机在设计上有令人拍案叫绝的技术革新?

2018-04-02知识

我觉得这个问题下,没有提到这架全身都是令人拍案叫绝的技术革新的飞机是一个巨大的遗憾,这是我在知乎肝过的最长的答案,希望可以弥补一下~

纵观人类100多年既漫长又短暂的航空史,如果让我选择一个最能代表人类在探索尖端科技中展现出的野心、勇气和创新,一个无可辩驳的工程学奇迹,那我会不假思索地选择上世纪50年代末开始,绽放于60年代的,由北美公司主导的XB-70超音速轰炸机项目。

1964年XB-70原型机20001首次在公众媒体前展示

说起可以持续3马赫飞行速度的大型飞机,SR-71无疑是家喻户晓的明星,而且其最高速度(3540千米/小时)和最高巡航高度(26000米)均高于XB-70(最高速度3310千米/小时,最高巡航高度24000米),但请不要忽视两者之间巨大的体积差距,SR-71的最大起飞重量相当于中型客机波音737-800,而XB-70则接近波音787-9洲际客机的起飞重量,对于一个起飞质量245吨的庞然大物,3马赫巡航的难度呈几何级增长。做一个形象的比喻,近2吨的高端轿车在平直的高速路上开到240千米/小时,虽然接近极限,但不少豪车都能做到,但是你想把6、7吨的6轮轻卡开到240千米每小时,恐怕得对车体进行改装并且加装超强发动机才能做到......

无奈的困局

尽管B-52在上世纪50年代因为其令人印象深刻的载弹量和航程被认为是世界上最成功的战略轰炸机,但他在苏联广布的防空雷达和超过2倍音速的截击机的联合威胁下,在执行对苏联本土的凌空核轰炸任务时几乎没什么生存空间。1956年首飞的康维尔公司B-58超音速轰炸机一定程度上解决了生存力底下的问题,它有这大三角翼的气动布局,翼下吊着4具具有加力燃烧室的涡喷发动机,超过0.9的推重比使得它首飞时是当时唯一可以持续超音速飞行的轰炸机。但是在当时的技术条件下为了追求这种「超音速持续性」,飞机无法做大,只能被归于中型轰炸机,故没法携带更多的油料和炸弹。面对所谓的苏联威胁,以及自家兄弟的核武器权力的竞争,心高气傲的美国空军很早就开始幻想拥有一种,既有B-52的庞大的载弹量,又有不亚于B-58的超音速性能的超级轰炸机。

左B-52,右B-58,1950S末美利坚空基核力量的中坚

幻想终归是幻想,不要说3马赫了,因为把B-52重量级的轰炸机推动到超过音障所需要的推力,对50年代犹如鶸的喷气式发动机来说就是一个几乎不可能完成的任务。当飞行器接近音障的时候,阻力会陡然增加,只有突破音障后,阻力系数才会缓慢下降。如果没有强劲的动力去推动飞机跨越音速障碍,那么超音速是不现实的。此外,我们经常看见某发动机的性能数据是推力XXXXX,通常这是指海平面的静推力,发动机的推力表现和所处的速度和高度都有关系,这里拿在中俄两国广泛应用的AL-31F发动机不同工况下的推力表来举例,海平面0速的推力和高空高速的差距是很大的。考虑到这个因素,大体积飞机的超音速更加困难。

跨音速阻力系数突增
发动机不同速度高度的性能是不同的

那怎么办?

只要思想不滑坡,办法总比空难多。科研和工业实力站在人类巅峰的1950s的美帝,总有充足的方法来满足你的幻想,这些方法,4字足以概括: 剑走偏锋

剑走偏锋的方案

既然诸如涡喷,涡桨这类燃气发动机无法满足推力需求,那就从隔壁一等人海军兄弟那儿取经。1956年1月21日,世界上第一条完全实战化的核动力潜艇在康涅迪格州通用动力的船厂下水。它接替二战时期战功彪炳的SS-168潜艇,被命名为SSN-571「鹦鹉螺号」,同时也致敬了凡尔纳的小说【海底两万里】。既然潜艇可以核动力,飞机为什么不行?于是康维尔公司就将世界上最大的轰炸机B-36改装成了核动力飞机验证机NB-36H以验证核动力可能性。

SSN-571鹦鹉螺号核潜艇,世界上第一艘实战化核动力潜艇
携带1MW试验核反应堆上天的NB-36H,后方是伴飞的B-50轰炸机

康维尔的终极目标是验证空载核反应堆的可行性和安全性,并开发出搭载核动力喷气式发动机的轰炸机(代号X-6),最终进化成全程超音速的、拥有几乎无限续航能力的大型核动力喷气式轰炸机。

喷气式核动力发动机原理:冷空气吸入发动机经过反应堆一回路的热交换器的加热,膨胀做功推动涡轮旋转提供推力,simple as shit,但实际实现有大量的问题要克服
超音速核动力轰炸机/加油机的一种设想

核动力飞机耗资恐怖,且进展缓慢,显然,人类还没有那么快进入全面核能时代。核动力飞机一旦坠毁带来的无法挽回的核污染也不是一般国家能够承受的,所以这种方案到1961年基本上就被放弃了。老对头苏联,也通过类似的图-119技术验证机放弃了类似想法,毕竟大家的困难是相同的。

另一种剑走偏锋的方案就和今天的主角XB-70有很大的关系了。

如果发动机不行,那我改进一下烧的燃料行不行?如果我的燃料不能支持全程超音速巡航,那我只是在接近目标的时候才开始超音速巡航可不可以呢?如果燃料还不够用,我加几个油箱还不行嘛?

本着这样的思路,两家大型航空工业公司,波音和北美踏上了设计之旅,项目代号WS-110A。说到波音大家都耳熟能详,毕竟大家可能都乘坐过波音公司的产品,不过说到北美航空公司,就不是所有人都非常熟悉了,因为这家公司今天已经不复存在。但是如果说起他们的拳头产品,大家一定听过,其中包括:大名鼎鼎的P-51「野马」战斗机,F-86「佩刀」战斗机,甚至连阿波罗登月飞船的服务舱和指令舱都是他们的产品。

北美公司的P51「野马」战斗机被认为是二战中综合性能最好的战斗机之一,中国人民解放军空军也曾经装备,所以PLA也曾经是北美航空的用户

1956年,两家公司拿出了初步的方案,这两种方案的外观能把人惊得下巴掉下来,简直可以满足一切科幻迷的幻想:

WS-110A波音方案(左),北美方案(右),您搁着造的是飞机还是歼星舰呐?

我为什么说这时候的美帝航空业是无限想象力的完美体现,这就是最好的例证。这两种方案虽然长得不尽相同,但解决问题的思路其实是一模一样的。飞机机翼的两端都有一架「小飞机」,其实这并非小飞机,而是一个装着满满当当燃油的大油箱!飞机以亚音速起飞,并且飞到距离目标几百千米的距离上,然后神奇的来了!他们的机翼会从中间断裂,把带有油箱的那个部分分离,这样飞机就会突然从大展弦比的亚音速轰炸机瞬间变成了一架具有梯形机翼的小展弦比的超音速飞机。这时再利用机体内部自带的,加入了硼烷的燃料,打开喷气式发动机的加力燃烧室,把飞机推动到2倍音速,接近目标再投核弹返回。硼烷燃料的能量密度远高于普通航空煤油,所以轰炸机可以提升10-15%的航程,但是带来的负面效果也是显著的,它极其昂贵,且燃烧产物有剧毒。

分离翼尖油箱后的北美方案WS-110A,米·····米米格-25去尾拉皮?不对,米格-25更晚出来,至于波音那个方案嘛,F·····FF-104?233333
这种亚超结合的飞行模式让我立刻想起了3M-54和我国的鹰击-18,他们算是精神续作~

这就等于绕过了美国空军的要求,用一种变通的形式,在现有的技术框架下实现了「差不多」的战术需求。不过这两种方案的起飞质量超过340吨,制造他们的成本怕不是要登月,空军对它们的实战能力和项目前景表示了担忧,负责美国空军战略司令部的柯蒂斯·李梅上将就对此不屑一顾,嘲讽到「你们是在造飞机还是在造船」

烧烤大师——柯蒂斯·李梅

于是空军拒绝了制造原型机的请求,转而要求两家航空巨头继续改进他们的设计。上世纪50年代到60年代恰好是美国超音速飞行研究进展最快的时候,几乎每一年都会上一个小台阶。WS-110A项目显然吸收了这些来自学界和产业界的利好,并用最新的技术来改进他们的设计。很快,类似于F-104的小展弦比梯形机翼被拥有更好的超音速性能的大型三角翼替代,用可调整的斜面二元进气道来优化不同速度下的进气效率,最关键的,就是他们终于等到了合适的发动机。

女武神:崛起

随着友商通用电气基于J-79涡喷引擎开发的YJ-93的高速进展,北美公司对WS-110A的完善也在不断进行。终于在1957年,他们拿出了最终的定型方案,用于和波音公司正式竞标远程重型超音速轰炸机项目,年底中标,1958年初开始制造原型机。预期的量产型分为两个版本,洲际轰炸机B-70A和保时捷设计版RS-70。啊不是,是侦察版RS-70......

这就是一代传奇XB-70「女武神」战略轰炸机诞生的故事。

WS-110A的最终设计

在1950年代,实现如此疯狂的指标代来的经济压力毫无疑问是极为巨大的,壕如美帝,也是主家无余,XB-70首先制造了一架原型机20001,单这一架的造价,不包含研制费用,就高达7.5亿美元,按照通货膨胀率计算相当于现在67.73亿美元,足以购买一整个联队的F-35战机。它也毫无疑问成为世界上最贵的单架飞机。

XB-70从外观上就极具科幻感和速度感,它也包含了诸多令人拍案叫绝的技术革新。事实上其技术革新实在太多,足以写一本书,我这里仅仅挑几点聊一聊,希望可以抛砖引玉。当然,我从不无脑吹什么东西,XB-70尽管实现了无数技术的飞跃,但相当多的技术并不成熟,试飞中暴露出的问题相当的多,这也是造成其最终命运的一部分原因。

首先,如同所有到达3马赫巡航速度在大气层内的飞行器,气动加热问题必须得到解决。在巡航高度,3马赫速度下,机体的平均温度可以达到230摄氏度,一些前部尖锐部分可达350摄氏度。此时,普通飞机的航空铝材早已出现严重的强度问题,更换材料是必须的选择。SR-71这样的「小飞机」可以选择把机体材料的92%都换成质地轻,耐温强并且强度高的钛合金,代价是焊接困难,只能用无比坑爹的密集铆接,甚至因为考虑到热胀冷缩,在地面时其油箱都无法封闭,只能一边加油一边漏油,使得其地面保障工作繁重冗长。

SR-71未上漆的样子,可以明显地看到其三角形的铆接蒙皮,有利于对抗几乎无解的热胀冷缩的问题

这些致命缺点使得钛合金用在大了三倍的XB-70上是完全无法想象的,于是工程师们干脆就使用密度为铝数倍的普通不锈钢来制造这架超级飞机。当然不是简单的使用不锈钢来替代铝材,而是创造性地使用了一种三明治结构:中间由蜂窝状的薄板支撑起两端非常薄的不锈钢钢板,这样既减轻了重量,又保证了散热。

在一些直面超音速气流的尖锐部位,,如翼尖,头锥等部位,XB-70也采用了较为昂贵的钛合金。而针对内部冷却,北美的解决方案听起来很像现在的火箭发动机,他们将冷的燃料流经那些需要冷却的地方,再输入引擎。不过尽管这种设计看上去精妙无比,实际测试中出现了关键部位强度不足的问题。相比于同样使用大量镍钢的2.8马赫的苏联米格25所展现出的惊人的可靠性,XB-70陷入了典型的美式科研陷阱,花了一大堆钱,提出了精妙而牛逼的解决方案,但是可靠性和实用性上败给了苏联神一般的整体设计和技术整合。XB-70的第一架原型机在尝试突破3马赫时,翼尖部位出现破损并直接损坏了后面的发动机,直到第二架原型机时才有一定的改善。

XB-70的内部透视,绿色的部分为油箱,红色的部分为发动机进气道,黑色的部分为发动机,请注意进气道旁边的收起的起落架

为了超音速优化的机身修长狭窄,这就给机内空间的布置带来了很高的难度。由于采用了相当耗油的超音速巡航设计,XB-70的绝大部分机体空间都要被庞大的油箱占据。245吨的最大起飞重量,油箱中就可以携带140吨燃油!还要再除去可以放置高达数吨的早期热核武器的弹舱,这就带来一个不大不小的问题:起落架舱极其难以布置。

XB-70 主起落架结构,注意Axle-beam fold,非常类似于后来波音777-300ER起落架上的semi levered gear strut

起落架,一个看起来完全不起眼的东西,是XB-70的重要组成部分。它的设计要求,至少从当时的视角来看,是绝对前无古人的。XB-70是当时世界上最大的飞机,也是世界上飞的最快的飞机。这带来了几个极富挑战性的问题:首先飞机巨大的重量需要强大的起落架来承受起降的冲击,大约40万牛米,其次是为了完成制动并满足XB-70在满载起飞时终止起飞的刹车要求,它的起落架必须有一套性能炸裂的刹车系统。根据计算,在XB-70全力刹车时,其刹车需要消耗56MW由于制动带来的热能,相当于几万个家用取暖器同时对着几个轮子狂吹。如此恐怖的能量要在方寸之间散热殆尽,这又对散热系统提出了极高的要求。还有,请别忘了,这是一架可以以3马赫的高速飞行的飞机,即便收在起落架舱中,起落架也会暴露在相当高的温度下,于是防热也是设计的重点。最后,还要考虑到极其有限的存放体积,这些困难使得就算平时不起眼的起落架的设计都需要极大的创新。

最终,工程师们设计了可以8轮小车式的主起落架,它通过在水平面上先扭转90度,再在垂直面上旋转90度,保证了起落架可以被收纳在一个狭小的立方体空间内。这是世界上第一个采用这种被后来无数民航客机模仿的半摇臂式4轮小车主起落架设计。我看到 @王骞river 和 @柴健翌 的答案,里面提到了波音77W的特别起落架设计,不知道波音的工程师是不是从近半个世纪前的竞争对手的方案那里得到的启发?哈哈哈

XB-70主起落架的两轴90度旋转收舱动作,此gif比真实速度快1倍

为了对抗飞行中产生的高温,整个起落架的轮胎部分都被刷上了耐温涂料防止因热爆胎。此外,工程师还专门设计了一套液体冷却系统,用乙二醇溶液作为冷却剂流经起落架舱的舱壁,带走热量。通过这套系统,可以将一层薄钢板相隔250摄氏度的外表面降温至内表面的121摄氏度。

为了解决刹车时的巨量热量,刹车片被单独放置在轮轴上,这样可以获得更高的散热能力。同时,每一组起落架上,除了四个轮胎外还专门安装了第五个传感轮,这只轮子和一个电机相连,它可以测出飞机真实的相对地速。这样整个负责控制刹车的计算机系统通过对比刹车片速度传感器就知道有没有出现抱死,一旦发生,就可以启动防抱死系统。要知道,这是50年代设计的飞机,很多今天我们看起来已经不足为奇的技术,在当时几乎都是不可想象的。

XB-70的弹射救生座椅,又是个为了解决不可能问题而生方案——在21公里高度,3马赫速度下救人。由于飞行员在这个速度下直接受到气流冲击很有可能身受重伤,工程师们创意地想出了「救生茧包」方案,即在弹射前将整个座椅完整包裹,这样飞行员无需直接面对超音速气流。当然北美并不是发明它的公司,茧包式的整体超音速弹射座椅最早应用在康维尔公司的B-58超音速轰炸机上,不过显而易见,XB-70的弹射要求远远严苛过B-58。

茧包式整体弹射座椅
进行高速火箭滑轨试验的XB-70救生舱弹射

在1966年6月8日那次著名的空中碰撞导致XB-70二号原型机坠毁的事件中,XB-70救生舱首次运作,成功救下首席试飞员Al White,但不够成熟的设计使得茧包在快速关闭时砸断了他的手臂。但遗憾的是副驾驶Carl Cross在飞机进入尾旋的极高G力中没能成功拉动弹射拉杆,所以救生舱没有启动。

XB-70所使用的YJ-93高推重比涡喷发动机也是值得赞颂的,其比原型,F-4战斗机上使用的J-79发动机仅仅重了680公斤,推力居然增加了一倍,加力推力达到了14060公斤。

XB-70巨大的进气道足以塞下一个人,每侧的进气道后端是3台YJ-93涡轮喷气式发动机

不过严格讲这是通用电气在早期航空发动机上的造诣,就不喧宾夺主地过多介绍了。

我随便举了隔热层、起落架和救生舱的例子,几乎每个子系统都可以算作「令人拍案叫绝的技术创新」,这架飞机的革新性可见一斑。正如我前面所说,XB-70身上勇敢无畏的创新实在是太多太多,要是事无巨细地描述,足以出一本书,事实上这样的书不仅存在而且还有好几本........

但是这些都是浮云,因为XB-70最耀眼的成就就是它前无古人的气动布局,前面这点创新就是开胃菜。

独特而划时代的气动布局,永远的神

高超音速的探索

(这部分是硬核背景科普,如果只想看XB-70的内容可以跳过这部分,不过我尽量保持我的一贯风格,用通俗化的语言来描述复杂概念,争取做到「只要认真看,就一定能够懂」。不过对于专业人士来说,这只是科普,所以可能不会过于严谨,比如在介绍升阻比概念时,我忽略了升阻比是一个与空速,攻角等因素相关的动态概念,以避免过高的复杂度)

1950年代,在吸收了相当的德国火箭科学家和他们的研究成果后,美国和苏联同时进入了火箭科技的高速发展时期。面对火箭弹道式飞行造成的不可避免的高超声速飞行,美国在加州加强了诸如国家航空咨询委员会艾姆斯研究中心等研究机构的基础设施,一大批各式各样的,速度和大小不一的风洞被建立了起来。

艾姆斯研究中心的两位风洞科学家和空气动力研究员,Alfred Eggers和Clarence Syvertson可以说是当时研究高超声速流体力学的先驱中最优秀的两位,他们和同事一边改进刚刚问世的超音速风洞的性能,一边利用他们做一些模型测试。在可以产生7马赫流速的风洞的帮助下,他们详细地探究了不同翼型和气动布局在超声速和高超声速环境下的升力和阻力,并于1956年发表了一篇科研备忘录 Aircraft Configurations Developing High Lift-Drag Ratios at High Supersonic Speeds ,在其中,他们提出了一种可以显著提高飞行器超音速升阻比的设计,并把经过风洞测试的数据附在了里面。

左Alfred Eggers,时任运载器环境部门老大,右Clarence Syvertson,后来艾姆斯研究中心主任
【Aircraft Configurations Developing High Lift-Drag Ratios at High Supersonic Speeds】研究备忘录封面

为了获得一个高效的飞行器设计,高升阻比通常是一个重要目标。升阻比(通常会用L/D来表示),是飞行器所受升力与阻力的比值,而飞行器在某一时刻所需要的升力基本上是一个固定的值,那么如果此数据越高,在等升力条件下的阻力就越小,飞机就可以飞的更快,或者在相同速度下更加节省燃料。举一些例子给大家有一些数值上的概念:滑翔机得益于它们长长的机翼和较低的速度,升阻比可以超过40,而空客A320在巡航高度巡航时升阻比约为16.3,经过特殊优化的长航程客机,诸如波音777-200升阻比可达19.3,而以高超声速进入稠密大气层的航天飞机轨道器升阻比只有1,但同样是航天飞机,在进近时,升阻比又会回到4.5左右。

总之,飞行器的最大升阻比随着马赫数(即音速的倍数)的增加而逐渐减少(Küchemann Relationship),这主要是因为超音速带来的强粘性效应和强激波。德裔英籍空气动力学家Dietrich Küchemann根据风洞实测数据发现了大致的比例关系,并且认为高马赫数下的升阻比是很难超过某一个固定数值的。

升阻比之墙(如虚线所示),纵轴代表最大升阻比,横轴为马赫数。实线和虚线都是著名的德裔英籍空气动力学家Dietrich Küchemann提出的拟合线,虚线在早期研究中是认为无法逾越的「升阻比之墙」 来源:Anderson, 2000

当Alfred Eggers和Clarence Syvertson在整理圆锥状的导弹头锥的实测弹道数据时,他们发现圆锥弹头会产生升力,在深入研究后,基于最基本的牛顿第三定律引申出的动量守恒定律,他们提出了一种相当有趣的设想。

下面这张图中左边就是圆锥形的弹头从屁股向头看去的示意图。弹头在高速飞行时,撞击了空气分子,空气分子的动量改变使得弹头产生了升力,可惜的是,上下表面因为轴对称,所以产生的升力基本上正负相抵。第一步改进,就是挫平上表面,这样可以显著减小上表面面积,这样翼面以下「撞开空气的表面」就远大于上表面了。这不就产生了正的升力了么。

Eggers and Syvertson, 1956

接下来我们选择翼面,这一步更加简单,因为我们已经挫平了上表面,那么飞行器在纵向(即垂直于纸面的这个方向)与空气做相对运动时,只会将向下或向外的动量传递给空气分子。机翼越长越大,对我们保存这样的动量越有利,我们理论上获得升力就更多,我们只需要从一团任意的机翼现状中裁剪出一块最大的机翼即可。那么机翼的大小受什么限制呢?相信你一眼就看出来受到机体头部尖锥产生的斜激波所限制,我们可不想伸出激波外而产生新的激波,那样会带来更大的阻力。所以我们的机翼方案就像一张纸(如下下图左侧),斜激波就像一把剪刀,裁剪出了最优化的翼面形状(如下下图右侧),岂不美哉?

尖锥物体产生的斜激波
Eggers and Syvertson, 1956

最后再搞点优化:我们看到这样一个半圆锥物体对空气产生的动量其实是有向下的分量,也同时有向侧面的分量。侧面的分量没什么卵用,而向下的分量则可以结结实实地提供升力。既然这样我们为啥不人为地偏转一下某些毫无用处的侧向动量呢?于是把机翼末梢弯折向下这样一个天才的想法就诞生了。通过偏折侧向的空气动量,飞行器进一步提高了升力。

Eggers and Syvertson, 1956

这样,两人的最终优化形态就展现在大家面前,参考Sketch (d),从一个纯粹的圆锥弹头,变身成了拥有下反翼尖,上表面一马平川的神奇形状。

Eggers and Syvertson, 1956

如此的奇怪形状被立即雕刻模型,送进了高超声速风洞,接受3马赫,4.24马赫,5.05马赫,6.28马赫的高速来流的洗礼。测试结果令两位工程师大喜所望,风洞试验结果显示,在低攻角的正常情况下,此种构型可以大幅提升高超音速升阻比,而且随着机翼偏折的角度越来愈大,零攻角的升阻比更高。为了让大家看懂这张数据表,我在图上做了标注:三张图中蓝色的点代分别代表着模型在3马赫,0攻角(即来流完全和下表面平行)下,翼面向下偏折的角度为0°,30°和60°时的升阻比,可以看到是随着偏折角度增加而增加的。

放一张3马赫的风洞数据作为例证,Eggers and Syvertson, 1956

尽管它的模样是一种超前和稚嫩的奇怪混合,尽管它被毫无趣味地简单命名为「Flat-Top」(意为「平头「),但女士们先生们,这是1956年啊,我们才刚刚在几乎是手把手的帮助下,仿制了歼-5战斗机,可见这是一个多么超越时代的发明。这种后来被称为「压缩升力」的,利用激波产生升力的设计,是后来在空天领域大行其道的乘波体的「直系祖先」,在我们今天惊叹于东风-17的乘波体弹头的先进性时,请不要忘记60年前这些先驱者们做的伟大的探索。

东风-17导弹

XB-70的气动设计

回到XB-70,早在困顿的WS-110A最终竞标前,北美的工程师面对推力和速度,航程与吨位的矛盾时,就尝试一切能够尝试的方法,减阻,增升,优化设计。他们发掘出了Eggers 和 Syvertson 写的备忘录,启发了WS-110A的改进设计。在新的设计中,引擎被并入机体内部,进气道放置于机体之下,这样有利于创造更好的超音速流场。超音速性能优良的三角翼替代了费拉不堪的梯形翼,并用双垂尾来增加超音速稳定性。这样的大幅度改良并最终让XB-70赢得和波音的竞标。这一部分我们就来看看北美的工程师是怎么把激波这个超音速飞行的副产品应用到极致的。

波音WS-110A最终方案,和北美的一比,没有折翼,没有设计精良的整体式进气道,没有很好的压缩升力应用,过高的单垂尾。难怪竞标输了.......

首先,根据压缩升力的应用原则,工程师想办法把原来两侧独立进气的发动机进气道,改到了机腹下方,这是一次绝妙的激波应用,因为通过进气道最前方原本用于负担超音速压缩的斜面同时也被当作了激波生成器,为了给大家直观展现这样一个天才设计,我画了一下示意图:

这个视角你会看的更加清楚,此外这张图上还可以看到进气道比机腹下表面低一些并留了一条缝,这样做是使得紧贴飞机表面的质量较差的附面层不被吸入发动机

蓝色部分是两块呈锐角构造的斜面,它们组成了一个类似楔子的结构。在超音速飞行下,它们会生成一面立体的斜激波,即红色部分,它们会被上方巨大的三角翼盖住,这样斜激波产生的压力就可以对主机翼起到一个非常好的增升作用。然后别忘了在高速飞行时,其机翼末端时下垂的,这意味着,这道激波甚至会触碰下反的翼尖反射,继续提供升力。事实上整个进气道外壁也是一个大斜面,也可以产生激波,并被垂下的翼面包住。

正在进行风洞试验的XB-70模型,可以看到其机头和机翼根部两道明显的斜激波
XB-70随着速度增加可以变动其机翼末端的下垂角度

然后便是惊为天人的翼尖向下折叠的设计,它简直是工程学的典范,因为它用一个小小的方法解决了三个重大问题: 一箭三雕 。47平方米的翼尖与主翼以铰链的方式接合,在高速飞行时翼面可以下垂25度至65度。首先,正如上面介绍的压缩升力设计,Eggers 和 Syvertson已经证明了它可以大幅度提升飞机的超音速升阻比。北美工程师则更进一步,人为的制造了多个斜激波,让机翼去包裹这些激波,从而进一步提高升力系数。其次,超音速下,薄型机翼的气动效率会骤降,如果不想大规模增厚机翼,那么就需要更多的垂直安定面,否则飞机的稳定性会出问题。垂下的机翼恰好提供了纵向稳定性,居然顺带着把这个问题解决了。要想知道多大程度上帮助了飞机的设计,请看一看波音方案的垂尾面积和厚度你就懂了。最后一个解决的问题是超音速气动中心位移的问题。当飞机的速度超过音速后,其气动中心会向机尾移动,而其质心则保持不变,这样会导致飞机会不自然地出现机头向下的倾向(参考下图)。通常有两种解决方案,一种就如同下图的飞机这样,利用翼面的偏转,给飞机叠加一个压机头的力,但这样会明显增大阻力。第二种方案是协和式飞机采用的方案,通过把机体后部的油抽到机体前部的油箱来改变飞机的重心,以匹配改变了的气动中心。

气动中心位移现象
协和式超音速客机的气动中心后移解决方案,飞一次要抽18吨的油

而北美的天才们的方案,直接通过偏折减小了机体后部的等效翼面积,这就等于在一定程度上遏制住了气动中心后移的问题,这样既不用抽油,也不用增加额外的阻力,简直完美。实验数据表明,光XB-70的这个翼尖下偏的技术,就给飞机减小了高达30%的诱导阻力。机头的鸭翼也可以在气动中心后移时向下偏转提供更多的抬头力矩去平衡气动中心后移造成的低头力矩。

这种类似的下反翼面后来也被进一步发展为很多乘波体飞行器的设计,不过大多没有最终完成项目。

苏联АЯКС超燃冲压飞行器设计
德国Saenger II TSTO空天飞机设计
很显然,虎鲸也是一种乘波体(极其确信)

最后一个令人感到吃鲸的便是XB-70那神一样的进气道设计。有一说一,就算放到现在,这种2X3的进气布局,都会让很多经验丰富的航空工程师头疼,更别提XB-70的主要设计工作是在50年代,更别提这个进气道需要考虑从2、300千米每小时的起飞降落到超过3马赫的超音速全部速度范围的进气效率。所以XB-70的进气道设计效果如何呢?

IT DID A FXXKING GREAT JOB!

俯视图,红色的部分表示进气道结构
九....九波系混合式可变进气道?太强了

进气道这个话题专业性极强,要想讲清楚是很不容易的一件事情,我尽全力讲的深入浅出,不过如果各位看官实在觉得枯燥,那就跳过这段吧,知道XB-70上的这玩意极其牛逼就行了!

另外推荐另外一位答主的回答,他写的图文并茂,简单易懂,可以学习到一些关于进气道的基础知识。

为了极致的全速度总压恢复最大化,XB-70在航空史上开创了将多波系外压缩和内压缩结合创举。

千万别被高大上的名词吓住,进气道的唯一目的,就是把高速度,低压力袭来的气流通过一番神奇的操作变成低速度,高压力的气流,然后提供给引擎享用,就这么简单。高压力这个估计理解难度不大,可为什么要降低气流的速度呢?原因也非常简单,就是现在的涡轮引擎只能在亚音速下工作......事实上不只是仅能在亚音速下工作,而且是很低的速度,大约马赫数0.4-0.5。所以什么是一个好的进气道?就是可以完美地把不同速度的超音速气流降速到马赫数0.4,还不能损失太多的总压。那怎么减速呢,答案就是用激波进行减速,从 @朱立畅 的答案中,你大概已经知道了可以用斜激波或者正激波来减速,而且得出了斜激波,YES!正激波,8行的结论。

原来想自己弄个Fluent跑一下,结果下错了..... 只能从网上找图了,完全不严谨,意思意思。左边斜激波,右边的前端是正激波,大家可以从白色箭头指示的色彩梯度中感受一下两者减速能力的强弱,右边的减速能力太强了

具体来说就是正激波减速能力非常强,但是压力损失太高,斜激波减速能力弱,但是压力损失则很低。在一切都相同的条件下,要是有能力使用斜激波减速,就别用正激波。但是对于一架进气速度超过3马赫的飞机来说,普通的斜面进气道是远远不够用的,原因很简单,因为普通的二元N波系(N小于等于4)进气道,他减速性能不够,到了发动机跟前还是超音速呀!那咋办呢,学习AMD堆核心的精神,一个字,堆!多弄几个斜激波不就完了么。这就是所谓的「外压缩」

从此图可以看出来,在相同马赫数下,进气口波系越多,总压恢复系数越高,意味着提供给引擎的空气质量更好

XB-70的进气道的外压缩部分是由四块固定的,互相呈一个很小的角度的四块斜面构成的,它们在超音速的情况下负责生成4道斜激波面,对高速袭来的空气进行初步的压缩。如果速度不大于2马赫,这4道斜激波压缩也足够了,不过我们要时刻记得,这是一架设计时速超过3马赫的飞机,如果来流上升到了3马赫,那么4道斜激波是远远不够的。在北美航空天才设计师的设计下,他们精确计算了超过2马赫后这四道斜激波的位置,并且给他们做了一个反射面!这样,随着速度的增加,激波越来越向后倾斜,这样就会打在反射面上形成反射,这等于又创造了几个斜激波,而且速度越快,产生反射的斜激波也会越多!在三马赫的全速下,全部的四条激波都被完美反射(见上上个图),这样就有8条斜激波参与减速增压了。

亚音速
超音速,但低于2马赫
大于2马赫

然而,对于超过3马赫的来流来说,这8条斜激波还是只能将其减速到1.6-1.8马赫,这离我们的目标0.4-0.5马赫还差的远着呢。那怎么办呢?外压缩搞完了,可以开始搞内压缩了嘛。内压缩的具体原理极其的复杂,当然还是利用斜激波,只不过它是一种连续复杂的激波形式。不过我想到了一个非常有趣的理解方式,火箭上常用的拉瓦尔喷管。拉瓦尔喷管的作用是将高压,低速度的火箭燃气,通过先收敛再膨胀的方式,转化成低压但是高速度的喷气流。嘿!这岂不是正好把我们的目的倒过来了?那简单,我们把拉瓦尔喷管倒过来用,不就达到了我们的目的了吗?

这,就是内压缩的原理,其实也很容易理解,不是么?

火箭发动机上拉瓦尔喷管通常是标配
拉瓦尔喷管,火箭正着用,内压缩

XB-70的进气道在外压缩结构后紧接着的就是内压缩结构。这个结构就是一个可以改变宽窄的,类似于拉瓦尔喷管的曲面结构。在亚音速下这个机构会扩张到最大,尽量减少曲面变化程度,以保证高效率的供气。而在超音速下,这个机构就会收窄,形成一个真正的收敛-扩张形态,而到了3马赫极速,它会进一步收窄,以加强减速效果。经过了这一个完整的减速增压的过程,3马赫的来流会减速到0.4马赫,此时的实测总压恢复系数可以依然保持在80%以上(对于3马赫的进气道,这个数据非常优秀)。YJ-93发动机大哥一边大口吞气一边说,好,很有精神!

XB-70进气道在3马赫下的工作模式,可以看到红色的3马赫速度的空气经过4道强烈的斜激波减速后到了2.2马赫左右,再通过4道反射激波减速到了1.6-1.8左右。然后进入内压缩区域,最终在最狭窄的喉部形成一个正激波,然后最终减速到了0.2-0.4马赫区间。

事实上内压缩进气口是极其难设计的,因为稍微搞不好,超音速气流就会在进入口形成正激波,毁了一锅粥。所以我们今天讲的只是非常基础的原理性的东西,真正让着架飞机飞起来,还能飞到三马赫,还有很多很多工程难题要解决。这更加让我钦佩XB-70的团队。想不到吧,一个小小的进气道居然如此复杂。

哦对了,SR-71的进气道也十分复杂,XB-70和SR-71是目前已知的唯二使用混合压缩进气道的飞机,不算上高超,有人飞机中也就他俩飞的最快。

时运不济,命运多舛

作为一架新技术爆表的战机,其多次遭遇技术困难是完全可以遇见的,毕竟再神的人他也是人。XB-70首飞就差点没摔了,先是尝试收轮,结果轮子直接卡住,吓得飞行员赶紧复位。然后是一发引擎空中停车。最后在降落时,后起落架着火损毁。第二次试飞液压系统故障,最后在一篇干涸的湖泊跑道上迫降....... 第二架原型机第一次3马赫试飞后,浑身油漆都掉光了.......这样的故事还有很多很多。最后,因为机毁人亡的事故,因为耗资实在过于巨大,因为美苏有了洲际弹道导弹和核潜艇这样的便宜的多的替代品,女武神轰炸机被取消项目,改成科研试飞,然后在1969年完全结束了自己使命。更讽刺的是叱咤风云的北美航空公司本身也因为财务问题于1967年被收购,最后几经辗转收归了老对手波音麾下。你可以说XB-70作为一个军用轰炸机项目是失败的,烧掉了太多的钱,死了几个优秀的飞行员,连最初规划的原型机都没造完,更别提量产了。但是我认为它是有航空史以来最伟大的项目,until now。

为什么说until now?

因为,一个也许比XB-70项目更加雄心勃勃,更加富有冒险精神,更加伟大的项目正在中国大地上酝酿。虽然以中国人的谦逊和谨慎,很少会说大话,也不常谈论多少年后的宏大愿景,但是这个项目的意义足以和莱特兄弟的那架能飞几百米的木制飞机相匹敌。一旦它成功,人类就将获得像坐飞机一样天地往返的能力。虽然我们不了解项目的具体,也只能听到关于它的只言片语,但我相信它不只是一个模型,希望若干年后,它成为航空航天史上最浓墨重彩的一笔,成为21世纪「代表人类在探索尖端科技中展现出的野心、勇气和创新,一个无可辩驳的工程学奇迹。」

脚踏大地,仰望星空。

下次我们来聊聊它,敬请关注