\begin{align*} \sum_{k=1}^n \frac{1}{\sqrt{k}}&=1+\sum_{k=2}^{n}\frac{1}{\sqrt{k}}< 1+\sum_{k=2}^n \frac{2}{\sqrt{k}+\sqrt{k-1}}\\ &=1+2\sum_{k=2}^n(\sqrt{k}-\sqrt{k-1})\\ &=1+2(\sqrt{n}-1)\\ &=2\sqrt{n}-1. \end{align*}
\begin{align*} \sum_{k=1}^n \frac{1}{\sqrt{k}}&=1+\sum_{k=2}^{n}\frac{1}{\sqrt{k}}< 1+\sum_{k=2}^n \frac{2}{\sqrt{k}+\sqrt{k-1}}\\ &=1+2\sum_{k=2}^n(\sqrt{k}-\sqrt{k-1})\\ &=1+2(\sqrt{n}-1)\\ &=2\sqrt{n}-1. \end{align*}
Copyright © 2024 www.atoomu.net NO.1 华文星空
商务合作:xingwausa#gmail.com(发送邮件请将#换成@)