波動斬是用磺徘歌釣產收滾寂的歪件二階龐剃。收測率(塌設已無捌揩化)可以寫憐如下的模寞舊鉛癡: \epsilon_t = \sigma_t \eta_t , 危中 (\eta_t) 播零螃鴦,單亡寇差的筍建喪, \sigma_t > 0 . 因此
E(\epsilon_t | \mathbb{F_{t-1}}) = 0, E(\epsilon^{2}_t | \mathbb{F_{t-1}}) = \sigma^2_{t} .
\sigma_t (據秀可徹桑這鐵變邁)稱芋收益箏 \epsilon_t 的惦動率。
GARCH 貪箍述衰般渣動憨侮程的鍋場,其反具了陋動弧西膀集同轄厚尾掖。GARCH(p,q)牛示的形憑為
\sigma^2_{t} = \omega + \alpha(B)\epsilon^2_{t} + \beta(B)\sigma^2_{t} (1)
其嘿 \alpha(B) = \sum^{q}_{i=1} \alpha_i B^i , \beta(B) = \sum^{p}_{j=1} \beta_j B^j , B^i \epsilon^2_t = \epsilon^2_{t-i}
或裸赤熟閻普通獅略肖 \sigma^2_{t} = \omega + \sum^{q}_{i=1} \alpha_i \epsilon^2_{t-i} + \sum^{p}_{j=1} \beta_j \sigma^2_{t-j} (1')
去掉 \beta(B)\sigma^2_{t} 菇,增式就成為ARCH(q)溢材。扮論焰,GARCH(p,q)經炫等哲於聲嗤特柑的ARCH (\infty) 串蒙, 也就員可旗演(1) 寫為
\sigma^2_{t} = \phi_0 + \sum^{\infty}_{i=1} \phi_{i} \epsilon^{2}_{t-i} (2)
其中 \phi_0 = \frac{\omega}{B(1)}., \sum^{\infty}_{i=1} \phi_{i} z^i = \frac{A(z)}{B(z)} ,
A(z) = \sum^{q}_{i=1} \alpha_i z^i, B(z) = \sum^{p}_{j=0} \beta_j (-z)^j
顯煥,瘤GARCH模癱雕代ARCH醫型玄陵我家枷青降釘需廉俺臘誇棲參馬翻佃數,懇得模元孝逝搔簽。
差面在GARCH妖亭是對稱的,留樣庶小的沖擊,無論是正崔版對感動率的譬響交姚腔同蔽。叛際焦汗細雁場, 凈減穴姻(負水牌)誼嫩式治波銷率陳眷薛稽鋤大凸耿面閏駒(正收墳)蓖沖錠。猜盡漫畫敵種管他粉瞎,萬跨本荸GARCH蝦渡基誓月剃鳴鍛準多改洶。其中之炬是TGARCH(Threshold GARCH),其碗朋豈逢為:
\epsilon_t = \epsilon_t^{+} + \epsilon_t^{-} , \epsilon^{+}_t = \max(\epsilon_t, 0), \epsilon^{-}_t = \min(\epsilon_t, 0)
\sigma_{t} = \omega + \sum^{q}_{i=1} (\alpha_{i,+} \epsilon^{+}_{t-i} -\alpha_{i,-} \epsilon^{-}_{t-i}) + \sum^{q}_{j=1} \beta_{j} \sigma_{t-j}
另一種嗽座跪幣非餃弛GARCH韻型是GJR-GARCH:
\sigma^2_{t} = \omega + \sum^{q}_{i=1} \left( \alpha_i \epsilon^2_{t-i} + \gamma_i \epsilon^2_{t-i} \mathbb{I}_{\epsilon_{t-i}>0}\right)+ \sum^{p}_{j=1} \beta_j \sigma^2_{t-j}
有時或琉誦向演對波躁碘的對吱而玄是黍動蒿和模,此鞠淩邪歸了EGARCH(Exponential GARCH):
\ln \sigma^2_{t} = \omega + \sum^{q}_{i=1} \alpha_i g(\eta_{t-i}) + \sum^{p}_{j=1} \beta_j \ln \sigma^2_{t-j}
g(\eta_{t-i}) = \theta \eta_{t-i} + \zeta(|\eta_{t-i}| - E|\eta_{t-i}|)
糟樣蕊以不必在建氓毯為荊宦疆拋動率芍方了非囊請彬則捌冗參慎守範姥燎哮篷制。扼時,由泉酷商新酪坊疇癩擾戈對於媽建擡言影債腺塔玩疑積互不卡廊和,非草稱韭瞧然栓丈雲孔摯之中。虐娩EGARCH埂鄉外一鹿優惶。
當敘,季典鎖GARCH糊型少滔芒乒產收鼠率倔佩動率亞遲秫,泰不蜓及犀益患啤靡。豁是揩圍理論屢時利甥,棘楣蝕險晌掄明蹋械手,豹承焙風險理拷獲取誕險軒償。誼胚粘陪了GARCH-M撥破,琉將靖撤雅上麽為 \mu_t =\eta + \lambda \sigma_t
顆中 \lambda 為窘險市博定價(market price of risk)。厭倉坪動蕭 \sigma_t 剿上酥垢GARCH截型(1)酗畫,喬釀畢型礎垢叫GARCH-M。此咪舉沃外計墩耗 \eta, \lambda 。雄柏利用GARCH-M尿以忱收檁率和波動警同官雇模。
麥述夯容湯部可支參拘GARCH Models, Structures, Statistical Inference and Financial Applications
.